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3 École Préparatoire aux Académies Militaires, Avenue Maréchal Tito, 4029 Sousse, Tunisia
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Abstract. In this paper, we present a theoretical study of the quantized electronic states in Cd1−xZnxS
quantum dots. The shape of the confining potential, the subband energies and their eigen envelope wave
functions are calculated by solving a one-dimensional Schrödinger equation. Electrons and holes are as-
sumed to be confined in dots having a flattened cylindrical geometry with a finite barrier height at the
boundary. Optical absorption measurements are used to fit the bandgap edge of the Cd1−xZnxS nanocrys-
tals. An analysis of the electron band parameters has been made as a function of Zn composition. Two
main features were revealed: (i) a multiplicity in Cd1−xZnxS quantum dots with different crystalline sizes
has been found to fit accurately experimental data in the composition range 0 ≤ x ≤ 0.2; (ii) the fit did
not, however, show a multiplicity for x higher than 0.4. On the other hand, we have calculated the energy
level structure of coupled Cd1−xZnxS semiconductor quantum dots using the tight-binding approximation.
As is found the Zn composition x = 0.4 is expected to be the most favorable to give rise a superlattice
behavior for the Cd1−xZnxS quantum dots studied.

PACS. 73.21.La Quantum dots – 73.22.-f Electronic structure of nanoscale materials: clusters, nanopar-
ticles, nanotubes, and nanocrystals – 71.55.Gs II-VI semiconductors

1 Introduction

From the fundamental view point, the study of electronic
and optical properties of quantum dots (QD’s) in III–V
and II–VI nanostructures is attracting a considerable in-
terest [1–15]. They also present various practical applica-
tions [8,12,16–21]. Concerning the QD’s based on II–VI
semiconductors, less studied, is the Cd1−xZnxS system,
despite the high potentiality of this material in device de-
sign as an essential compound in solar cells [16,17,22,23].
Theoretically, as for the other II–VI QD’s, the electronic
properties of Cd1−xZnxS nanoparticles have been usu-
ally investigated using a spherical geometry model with
an infinite potential barrier at the boundary [8–12]. As
was found, this model evidences the quantum confine-
ment in Cd1−xZnxS nanocrystals. It can not, however, ac-
count for the coupling between QD’s. In a recent study, we
have investigated the electronic properties of Cd1−xZnxS
nanocrystals [13]. We adopted the spherical geometry
model, but with finite potential barriers. Both electrons
and holes are assumed to be confined in nanospheres. Us-
ing this model, we have calculated the shape of the confin-
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ing potential, the quantized energies as well as the exciton
bound states and the oscillator strength of interband tran-
sitions. This approach has an advantage to access to un-
known fundamental parameters of Cd1−xZnxS QD’s such
as the crystallite size and the barrier potential heights.
Nevertheless, the spherical geometry model does not lend
simply to a computation of the band edges for coupled
QD’s, namely along different quantization directions.

For III–V semiconductors, several works have at-
tempted to determine the geometry of QS’s [1–7]. These
investigations have failed to provide details on the shape
and crystalline size. In addition, the QD sizes were usu-
ally used as adjustable parameters to fit experimental
data. Williamson et al suppose that QD’s can have a
lens and pyramidal shapes [6]. They also considered dif-
ferent geometries including these two shapes. Grundmann
et al have evoked three types of elementary structures, the
pseudomorphic slab, cylinder and sphere to calculate the
strain distribution in and around pyramidal InAs/GaAs
QD’s [7]. Based on these works and for sake of simplicity,
we adopted the flattened cylindrical geometry in describ-
ing the Cd1−xZnxS nanoparticles.

The present work reports on the modeling of
Cd1−xZnxS QD’s with the aim to investigate their
confinement properties. Our interest has been focused, in
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Table 1. Parameters used to calculate the electronic states of Cd1−xZnxS QD’s. Also reported in the table are the relevant
confinement energies εe and εh, Eeff

g and Ebulk
g versus Zn composition.

x
m∗

e
m0

m∗
h

m0
Ve (eV) Vh (eV) L (nm) εe (eV) εh (eV) Ebulk

g (eV) Eeff
g (eV)

0.0 0.16 5.00 0.10 0.25 1.0 0.090 0.040 2.42 2.56
0.25 0.10 2.0 0.133 0.011
1.00 0.10 3.0 0.146 0.005

0.2 0.25 0.25 1.0 0.195 0.044 2.61 2.85
1.00 0.10 2.0 0.233 0.012

0.4 0.45 0.50 1.0 0.280 0.060 2.82 3.16
0.6 0.75 0.50 1.0 0.386 0.069 3.05 3.51
0.8 1.50 0.50 1.0 0.490 0.083 3.31 3.89
1.0 0.28 1.76 2.00 2.00 1.0 0.557 0.145 3.60 4.30

particular, on the coupling between QD’s. For this pur-
pose, we have considered the Cd1−xZnxS nanocrystallites
having a flattened cylindrical geometry with a finite po-
tential barrier at the boundary. Calculations have been
carried out versus Zn composition going from CdS to ZnS.
After an introduction, we report an outline on the com-
putational method. Discussion of results and conclusions
are presented in the following.

2 Modeling and results

The system to simulate consists of an electron and a hole,
both being confined in a Cd1−xZnxS QD. The latter is
assumed to having a cylindrical geometry of radius R and
a height L. The semiconductor material is capped inside
a dielectric host matrix. According to that reported in
reference [6], lens-shaped QD’s have as circular base with
diameter 25 nm and a height of 3.5 nm; while those of
pyramidal forms have a diameter of 11.3 nm and a height
of 5.6 nm respectively. If, similarly, the QD’s being stud-
ied have a diameter larger than the height, ie they show a
flattened cylindrical geometry, the quantum confinement
along the transversal directions of the cylinder can be dis-
regarded. Using this approximation, the problem to solve
reduces to that of a one-dimensional potential. Hence,
the electron and hole states in a QD are given from the
Hamiltonian:

H = − �
2

2m∗
e,h

d2

dz2
e,h

+ Ve,h (ze,h) (1)

where � is the Plank’s constant, m∗ is the effective mass
of free carriers, z is the direction perpendicular to the QD
base and V (z) represents the potential energy. The sub-
scripts e and h refer to the electron and hole particles
respectively. Based on the flattened cylindrical geometry
assumption, V (z) can be modeled by a square-shaped po-
tential with a width L and a barrier height V . In deriving
the Hamiltonian H , we have adopted the effective mass
theory (EMT) and the band parabolicity approximation
(BPA) as well. The mismatch of the effective mass be-
tween the well and the barrier has been neglected. Values
of the electron and hole effective masses, as calculated for

CdS and ZnS [24], are listed in Table 1. These two pa-
rameters for Cd1−xZnxS dots with different Zn composi-
tions have been deduced using the Vegard’s law. In solving
the single-particle Schrödinger equation for electrons and
holes, Ve, Vh and L were treated as fitting parameters.
Using equation (1), we have computed the confinement
energies of free carriers, εe and εh, versus Zn composition.
The results obtained are summarized in Table 1. The char-
acteristic Ve, Vh and L parameters for Cd1−xZnxS QD’s
investigated were derived as follows: εe+εh = Eeff

g −Ebulk
g ,

where Eeff
g is the effective band gap of Cd1−xZnxS QD’s

and Ebulk
g is the band gap energy of bulk Cd1−xZnxS. Val-

ues of Eeff
g are deduced from absorption measurements,

performed on sol-gel grown Cd1−xZnxS nanocrystals [12].
As for the x-dependence of Ebulk

g , it is taken from refer-
ence [23]. It is worth noticing that the sum of εe and εh

corresponds to the band gap widening, which is induced
by a confinement effect. As is found from this study, cal-
culations reveal a multiplicity of three types of QD’s for
CdS, which differ in crystallite size L and in the barrier
heights Ve and Vh. Also shown in the table is the increas-
ing of Ve with L. Whereas the potential barrier Vh for
holes shows a decreasing tendency as L increases. As for
the confinement energies, εe and εh vary in inverse pro-
portion so as their sum keeps the same bandgap widening
∆Eg (x = 0) = 0.14 eV. For Cd1−xZnxS with x = 0.2,
we have distinguished only two types of QD’s, associated
with L = 1 and 2 nm. It should be noted that the elec-
tron band parameters Ve, Vh, εe and εh show the same
trend versus L compared to that of CdS. In the case of
Cd1−xZnxS nanocrystallites having a Zn molar fraction
larger than 0.4, the absorption results were fitted accu-
rately by using a single distribution of QD’s. The latter
is characterized by a crystalline size L of 1 nm. The hole
confinement energy is not, however, large for Cd1−xZnxS
QD’s independently of their compositions. The reasons of
this are: firstly the Cd substitution by a Zn atom induces a
potential more attractive for the electrons, secondly there
is a large difference between the electron and hole effective
masses in CdS, ZnS and in their alloys.

An attempt to explain the multiplicity of Cd1−xZnxS
QD’s is as follows. For CdS (x = 0), the crystal structure
is typically hexagonal. While, for higher Zn contents, the
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Fig. 1. Normalized coupling integrals versus x for Cd1−xZnxS
QD’s: ♦ re,e (x) /re,e (0) ; � βe (x) /βe (0) ; � γe (x) /γe (0) ;
◦ ∆Ee (x) /∆Ee (0). Values of re,e, βe, γe and ∆Ee for x = 0
are 0.93, 0.080 eV, 0.090 eV, 0.069 eV respectively.

latter changes from wurtzite to cubic [26–30]. Therefore, a
phase transition in the crystal structure of Cd1−xZnxS oc-
curs at an intermediate Zn composition x. Values of this
composition, as reported in different works, range from
0.27 to 0.80 [27–30]. As is also known, the crystalline sizes
of the Cd1−xZnxS ternary alloy show a decreasing trend
with increased Zn compositions. For these reasons, in the
case of low Zn compositions, the nucleation of hexagonal
elementary cells can give rise to a variety of QD’s, which
differ in the crystallite size. However, for higher ZnS mo-
lar fractions, the assembling of elementary cells in cubic
phase preserves the uniformity in geometry, which leads
to a single distribution of QD’s. The latter ones are char-
acterized by the same crystallite size.

In designing semiconductor devices, a crucial problem
to solve is to accelerate processes governing the transfer
of carriers. The ways of reducing the switching time are
to shorten the carrier transfer distance and increase the
carriers’ velocity. High electron mobility transistors hav-
ing a two-dimensional electron gas created in an extremely
short channel were realized using this procedure. Another
approach is to use nanostructures containing tunneling-
coupled QD’s as an active element. Let us now consider
the electron-hole pair in a double quantum dot (DQD).
The dots are assumed to be cylindrical. The ground state
of this system can be described simply if the electron-hole
interaction is neglected. For the DQD considered, one has
to add the potential Veh(zeh − d) with d being the spatial
separation of QD’s to the Hamiltonian of equation (1). By
solving the total Hamiltonian with use the tight banding
approximation (TBA), we have calculated the wave func-
tion overlap, the exchange and the correlation integrals as
well as the energy levels’ splitting versus Zn composition.
We have denoted them by r, β, γ and ∆E respectively.
Calculations were carried out for d = 2 nm. The results
are depicted in Figure 1. As can be noticed from the plots,

the electron wave function overlap re,e decreases with in-
creased x. Both βe and ∆Ee are shown to increase with Zn
composition up to x = 0.4 and they decrease in the same
way as x increases from 0.4 to 1.0. As for γe, this pa-
rameter, however, shows an increasing tendency with x.
The latter study led to three main observations: (i) for
Cd1−xZnxS QD’s with a low zinc content, the interaction
between electron gases is mainly induced by the wave func-
tion overlap and exchange effects; (ii) for the intermediate
composition x = 0.4, the coupling between QD’s is the
highest for which the energy splitting ∆E is maximum;
(iii) at high zinc compositions, the electron coupling is en-
sured by correlation effects rather than the overlap and the
exchange; the nanocrystallites, however, tend to behave
as isolated QD’s. As well demonstrated from this study,
Cd1−xZnxS QD’s with Zn composition close to x = 0.4 are
appropriate to form superlattice structures for electrons.
For the holes, the same trend has been observed for the r,
β, γ and ∆E parameters as a function of x. Except that
these parameters remain insignificant, which means that
the strong localization character of holes in the QD’s is
highly preserved going from CdS to ZnS.

3 Conclusion

We investigated at first the electronic properties of single
Cd1−xZnxS QD’s for Zn composition ranging from CdS to
ZnS. To describe the QD’s, we have considered a flattened
cylindrical geometry with a finite potential barrier at the
boundary. Using the model of a square-shaped potential,
we have calculated the band edges of Cd1−xZnxS QD’s as
a function of composition x. As an experimental support,
we have used absorption data, obtained on Cd1−xZnxS
nanocrystalline thin films prepared by the sol-gel tech-
nique. An analysis of the results has evidenced a mul-
tiplicity in QD’s with different crystallite sizes at low Zn
compositions only. On the other hand, we have studied the
electronic properties of coupled Cd1−xZnxS QD’s. Based
on the TBA, we have computed the coupling parameters
such as the wave function overlap, the exchange and cor-
relation integrals as well as the splitting of the ground
states versus Zn composition. As has been demonstrated
from the latter study, Cd1−xZnxS QD’s with composition
x close to 0.4 can exhibit a superlattice behavior for con-
duction electrons. This can open a way to Cd1−xZnxS for
designing a new class of QDs’ devices.
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